Measuring User Productivity in Machine Translation Enhanced Computer Assisted Translation
نویسندگان
چکیده
This paper addresses the problem of reliably measuring productivity gains by professional translators working with a machine translation enhanced computer assisted translation tool. In particular, we report on a field test we carried out with a commercial CAT tool in which translation memory matches were supplemented with suggestions from a commercial machine translation engine. The field test was conducted with 12 professional translators working on real translation projects. Productivity of translators were measured with two indicators, post-editing speed and post-editing effort, on two translation directions, English–Italian and English–German, and two linguistic domains, legal and information technology. Besides a detailed statistical analysis of the experimental results, we also discuss issues encountered in running the test.
منابع مشابه
Cost-sensitive active learning for computer-assisted translation
Machine translation technology is not perfect. To be successfully embedded in real-world applications, it must compensate for its imperfections by interacting intelligently with the user within a computer-assisted translation framework. The interactive-predictive paradigm, where both a statistical translation model and a human expert collaborate to generate the translation, has been shown to be...
متن کاملبهبود و توسعه یک سیستم مترجمیار انگلیسی به فارسی
In recent years, significant improvements have been achieved in statistical machine translation (SMT), but still even the best machine translation technology is far from replacing or even competing with human translators. Another way to increase the productivity of the translation process is computer-assisted translation (CAT) system. In a CAT system, the human translator begins to type the tra...
متن کاملInteractive-predictive speech-enabled computer-assisted translation
In this paper, we study the incorporation of statistical machine translation models to automatic speech recognition models in the framework of computer-assisted translation. The system is given a source language text to be translated and it shows the source text to the human translator to translate it orally. The system captures the user speech which is the dictation of the target language sent...
متن کاملContinuous Adaptation to User Feedback for Statistical Machine Translation
This paper gives a detailed experiment feedback of different approaches to adapt a statistical machine translation system towards a targeted translation project, using only small amounts of parallel in-domain data. The experiments were performed by professional translators under realistic conditions of work using a computer assisted translation tool. We analyze the influence of these adaptation...
متن کاملLINGSTAT: An Interactive, Machine-Aided Translation System
The goal of LINGSTAT is to produce an interactive machine translation system designed to increase the productivity of a user, with little knowledge of the source language, in translating or extracting information from foreign language documents. This system will make use of statistical information gathered from parallel and singlelanguage corpora, and linguistic information at all levels (lexic...
متن کامل